Applesauce is a sweetened mash from apples, to which, next to apples often other fruits can be added. To the fruit sugar extra sugar is added. The product contains too little vitamins and minerals to replace vegetables.

Applesauce is a sweetened puree of apples, and is especially popular in Netherlands. In the Netherlands, an average of 4.5 kg applesauce per person, per year is eaten.

Besides apples, other fruits are often added to the applesauce. However, other fruits are not allowed to exceed a maximum of 10% of the total fruit weight. The minimum refractometer value of 18% is obtained by adding sugar. The natural sugar content of apples is about 10%, therefore, 8 to 14% extra sugar is added.

Additionally, applesauce has to meet to the following requirements:

  • Being light and golden yellow in colour
  • Have a fresh aroma
  • A pH of 3.2 to 3.6
  • A malic acid content of between 0.27 to 0.75%
  • The correct viscosity (in the Dutch Commodities Act several measurement methods are mentioned.

Traditionally, Goudreinette apples (Belle de Boskoop) are used to produce applesauce. These apples are, however, expensive compared to the increasingly more used Golden Delicious and Cox’s Orange apples. Golden Delicious apples contribute to a good color and the Cox’s Orange ensure a mildly acidic flavor.

Applesauce is mainly eaten as a side dish or dessert. The product does not contain enough vitamins and minerals to replace vegetables. Applesauce production


Throughout the year several apple varieties are used for the production of applesauce, it is therefore important to combine the qualities of these varieties into an acceptable applesauce, to maintain a constant quality. The colour, acidity and quality of the apples should be taken into account.

Unripe or green apples make a too sour and too green apple sauce. Using only red apple varieties will produce an applesauce that is too red. By putting the apples in a certain mixing ratio on a conveyor belt, leading to a drum washer, a quality as constant as possible is obtained.


Using a drum washer, a rotating cylinder-shaped washer with perforated sides, soil, leaf residues, pesticides and rotten spots are removed from the apples. To ensure optimal cleaning of the apples, the nozzles in the drum washer should have sufficiently high water pressure, the drum has to be fully filled and should have brushes. The drums are placed in a tilted position, moving the apples slowly from the highest to the lowest point, where the apples are collected on a conveyor belt. After washing, the bad apples are removed and the apples are stripped of any unwanted parts using a roller band.


To prevent enzymatic browning, the enzymes responsible for this reaction have to be destroyed during blanching. The apples are shredded in order to make the whole apple reach the high temperature as quickly as possible and to reduce steam consumption. The shredding/ cutting machine is usually placed above the opening of a steam gun.


In a steam gun (a stainless steel tube in which a conveyor screw/ auger conveyor is rotating), steam is injected into the shredded apples, via perforations in the sides of the steel tube. Because the steam gun is placed in an inclined position and the condensed moisture is removed only in part, the steam gun operates in the first part as a water blancher and in the second part as a steam blancher. Despite the large variety of apple species, the proper degree of cooking can be obtained with the correct steam flow rate and product passing time in the steam gun. Overcooked apples will cause the applesauce to be mealy, crème like and undercooked apples will cause an excessive product loss. The thickness of the applesauce can be regulated by draining the released condensation. The drained off condensation water can be processed into apple juice concentrate.


During the passing process, the apples are crushed to a pulp, this releases the pectin which give the desired consistency to the applesauce, and also any peels, seeds and cores are removed. This is process is carried out with one or two passing machines, in series arranged. Using 2 to 4 rasp bars, the cooked apples are pressed through the sieve openings in the wall (0.6 to 1.0 mm). If the sieve openings are too large this will result in a bad separation process and too small sieve holes will produce an applesauce with a mealy, crème like texture. In case two passing machines are used, the second machine has finer screen (sieve) apertures.

The passing time and the rotational speed of the rasp bars have an effect on the consistency and quality of the applesauce. If the rotation speed is too high the applesauce may get a bitter taste and an undesirable appearance because peels and seeds may also get into the applesauce.


In large mixing boxes sugar is added to the applesauce, until a refractometer value of at least 18% is obtained. Furthermore, ascorbic acid is often added in order to prevent discoloration of the applesauce in the top of the packaging. During the passing process the vitamin C that is naturally present in the apples is largely lost. When using with apples with a lower acid content, citric acid can be added to counteract a bland flavour.

After the mixing step, the hot applesauce is pumped to the filling machines.


The applesauce is heated up (as hot as possible) to a temperature of about 85°C, filled into glass jars or in tins with a coated bottom and lid. Volumetric filling machines are used to precisely measure off the applesauce to fit a jar or tin.

If the applesauce still has a temperature of about 90°C at the time of closing the jars and tins, the pasteurization step can be skipped. However, it is important that the covers and lids are also pasteurized. This can be done by turning the jars upside down.


After filling, the containers are pasteurized. Since applesauce is naturally acidic (pH << 4.6), bacterial spores cannot grow, and sterilization is not necessary.

In a tunnel pasteurizer or a hydrostatic continuous sterilization tower, pasteurization is carried out at at 85°C for 25 minutes or at 98°C for 7 to 10 minutes, depending on the volume and type of packaging. A minimum core temperature of 80°C has to be achieved.


After pasteurization, the applesauce packages must be cooled down rapidly, ensuring that the average temperature of the applesauce is lower than 35°C.


The packages can now be labeled and placed on trays with shrink wrap. The applesauce can now be stored outside of the refrigerator for a longer period of time.

Food Safety & Hygienic Design

On relatively acidic products (pH<4.6) microbial spores can not develop into vegetative (alive) microorganisms, which could potentially spoil or severely contaminate a product. Sterilization or deactivation of spores is therefore unnecessary. The milder pasteurization technique is sufficient to kill vegetative cells and has less of an impact on the flavor.

The production equipment and machinery must be of of a GMP-class. Which means that the machinery and equipment must be visibly clean before use. In case that the machinery cannot be emptied fully (and is clean and set aside dry), the machinery has to be thoroughly cleaned and disinfected before the production process can start again. Cleanable to a microbial level (hygienic design) is not necessarily required for this process. A light microbial contamination should not be a problem.

Even though the product undergoes a heat-treatment after being sealed, this does not give a license to sort less accurate, to clean less frequently or not fully clean the machinery and equipment. Large amounts of heat-stable toxins, originating from microorganisms, can remain toxic even after pasteurization and will keep posing a threat to the health of the consumer.


Pulsating electric field - Principle

Pulsed electric field in order to kill micro-organisms has long been known. For some time the application has been expensive compared to other techniques, but the application may be interesting for some products. Advantages are that the food product to be treated does not change in chemical and physical properties, hardly increases in temperature, little water and energy is required and far less cleaning (compared to UHT).

Het antibacteriële effect van een pulserend elektrisch veld was reeds getest aan het eind van de 19de eeuw, maar de dodelijke gevolgen voor micro-organismen met lage frequentie toepassing van de wisselstroom werden later gevonden.

In de jaren '20 van de vorige eeuw werd in Europa en de V.S een proces genaamd “Electropure” geïntroduceerd. Het was één van de eerste pogingen om elektriciteit voor melkpasteurisatie te gebruiken en het werd uitgevoerd door de toepassing van een (niet gepulseerde) wisselstroom van 220 V binnen een behandelruimte van koolstofelektrode. Ongeveer vijftig installaties waren binnen verrichting tot de jaren '50, maar wegens toenemende energiekosten en de concurrentie van nieuwe milde thermische conserveringstechnieken (zoals UHT en Ohmic Heating), zijn deze installaties vervangen.
Behalve thermische gevolgen die op het mechanisme van Ohmic Heating berusten, werden de dodelijke gevolgen van elektrochemische reacties zoals de hydrolyse van chloor gevonden toen voedsel werd behandeld met ontlading van 3-4 kV.
Pulserende ontlading van hoogspanningselektriciteit over twee elektroden voor microbiële inactivering werden voor het eerst in de jaren '50 onderzocht. Deze behandeling resulteerde in een genoemde “elektrohydraulische behandeling”. De elektroden werden ondergedompeld in een vloeibare middel binnen een drukvat, de elektrische bogen werden geproduceerd door hoogspanningspulsen die voorbijgaande drukgolven tot 250 MPa en ultraviolet licht pulsen vormden.
Verschillende experimenten werden toonden aan dat de pulserend elektrische velden kunnen worden toegepast voor verstoring van cellen in voedselmateriaal. Deze experimenten werden verder ontwikkeld en uitgebreid voor de inactivering van micro-organismen en afvalwaterbehandeling. [1]

1 Principe

De belangrijkste componenten die voor pulserend elektrisch veld van toepassing zijn vereist, zijn één pulsgeneratiesysteem en een behandelruimte. Een essentiële eis voor een efficiënte productie is een continu stromend systeem met een hoge capaciteit die aan ontwikkeling van continue behandelingkamers leidt. Het voedsel wordt daarin doorgepompt terwijl het blootgesteld wordt, aan het omringend elektrische veld en hoge temperaturen.
Voordat de verhitting begint, zouden de warmtewisselaars kunnen worden gebruikt, om de media te verhitten. Na de behandeling, zou de gedissipeerde elektrische energie in een temperatuurverhoging kunnen resulteren. Deze energie dient te worden verwijderd voordat het product aseptisch verpakt wordt.
Een aseptische verpakkingsmethode wordt vereist om opnieuw verontreinigen te verhinderen/voorkomen. Eén van de belangrijkste voordelen om het product te behandelen met PEF, is het continu stromend systeem met zeer korte verwerkingstijden, met als vervolg dat het systeem gemakkelijk kan worden uitgevoerd in een bestaande verwerkingslijnen.
Het pulsgeneratiesysteem zet de elektrische sterkte om van een laag voltage niveau naar hoog pulserend elektrische velden. [2]

Door een pulserend spanningsverschil van meer dan 1 Volt over het celmembraan van vegetatieve micro-organismen raakt dat membraan lek of gaat zelfs kapot. Boven de kritische sterkte van ongeveer 1 Volt ontstaan microporiën in de celwand, waardoor voedingsstoffen weglekken en gifstoffen de cel binnen kunnen dringen. Het micro-organisme heeft al zijn energie nodig om “in stand te blijven”. Daardoor is voor de groei geen energie meer over.
Een elektrisch veld wordt aangelegd over een vloeibaar voedingsmiddel, dat tussen een positief geladen en een negatief geladen elektrode doorstroomt. Dat veld wordt telkens zeer kort, tussen enkele microseconden tot milliseconden gehandhaafd waarna de plus en min lading weer naar nul daalt. Vervolgens wordt opnieuw een zeer kort elektrisch veld aangelegd. Dit is de reden waarom deze term “Pulserend Elektrisch Veld” wordt genoemd.
Men geeft een voedingsmiddel tussen 10 en 100 van dergelijke korte pulsen, met een gebruikte veldsterkte tussen ongeveer 10 KV/cm en 40 KV/cm. Bij 40 kV/cm is het spanningsverschil zo groot dat door het voedingsmiddel kortsluiting ontstaat. Dit effect is uiteraard niet gewenst. Vanaf ongeveer 15 kV/cm sterven vegetatieve micro-organismen in het product af. [3]

Een vereenvoudigde kring voor het afwikkelen van pulsen wordt getoond in Figuur 1.1, welke bestaat uit een “het laden en het lossen eenheid”. Een voorraad energie component wordt dwars opgeladen door een “charging resistor” via een DC hoog energiespanning voorziening.

Simplified circuits

Figuur 1.1: Vereenvoudigde stroomkringen van de pulsgeneratiesystemen en de ideale voltagepatronen van exponentieel bederf en vierkante golfpulsen (Sun et. al 2005, p.76)

Principle high pulsed electric field

Figuur 1.2: Principe hoge pulserend elektrisch veld (Barbosa et. al. 1998, p.55)


2 Indeling apparatuur

De behandelruimte
De behandelruimte, waarin het voedsel aan het pulserend elektrische veld wordt blootgesteld, bestaat uit minstens twee elektroden: één op hoogspanning en de andere op grondpotentieel, dat door materiaal in verschillende geometrieconfiguraties te isoleren wordt gescheiden. Parallelle platen, de coxiaal of co-lineaire cilinders zijn algemeen gebruikt. Een groot aantal studies is uitgevoerd met parallelle plaatsystemen binnen iedere partij en later in ononderbroken stroomrichting. Batch-ruimtes verstrekken vele voordelen voor laboratoriumgebruik; de kleine volumes van behandelingsmedia worden vereist en de behandelingstemperatuur is gemakkelijk om door de elektroden te koelen en door langzame herhalingsbesturing te handhaven.
Tussen de verschillende elektroden configuraties (Figuur 2.1), geven de parallelle platen het meest eenvormige elektrische veld op een groot bruikbaar veld tussen de platen, maar de behandelingsintensiteit wordt verminderd in grensvelden. In batch-kamers kunnen productstroom tot veranderingen van positie leiden (zonder zich te mengen) en een aanzienlijk deel van het volume kan onder-bewerkt blijven, dit is namelijk noodzakelijk voor de micro-organismen inactivering. In continue behandelruimtes, kan dit worden verhinderd door veelvoudige behandelingszones toe te voegen in lijn of in stroomkanalen. Om de hoge doorstroom te bereiken die voor industriële toepassingen wordt vereist, moeten de pulsen met een hoge herhalingsstroom worden toegepast, wat tot een snelle temperatuurverhoging van de media leidt. Het elektrode en isolatiemateriaal moet food grade en autoclavable zijn. Voorts moeten de elektrochemische eigenschappen in acht worden genomen. Goud, platina, koolstof en metaaloxides worden als alternatief gezien voor algemeen gebruikte roestvrij staalelektroden. Om productblootstelling aan de elektroden oppervlakte te vermijden, werd een systeem ontwikkeld dat uit een glasrol bestaat: het omringen van de werkstukelektrode. Dit bevestigde dat de microbiële inactivering zelfs zonder direct contact kan worden verkregen.

Configurations of treatment rooms for continuous PEF

Figuur 2.1: Configuraties van behandelruimtes voor continu PEF behandeling:
a) Parallel plaat
b) Coxiaal plaat
c) Co-lineaire configuratie
(Sun et. al. 2005, p. 78)

3 Microbiële afdoding

3.1 Microbiële afdoding

Voor voldoende inactivering van micro-organismen kunnen een aantal factoren van belang zijn: behandelingstijd, pulsvorm en behandelingstemperatuur (waarvan het laatste het meeste effect heeft).

Een verhoging van de behandelingstijd zorgt voor uitstekende inactivatie, maar in sommige gevallen wordt verzadiging verkregen. Indien de puls in breedte toeneemt, neemt de micro-organismen afdoding ook toe. De pulsbreedte is niet gelijk gekoppeld aan behandelingstijd voor de afdoding van micro-organismen. Afhankelijk van de soort micro-organismen heeft de behandelingstijd meer effect op de inactivering dan de pulsbreedte.
Uit een onderzoek is gebleken dat voor inactivering van Salmonella senftenberg de behandelingstijd veel meer effect heeft dan de pulsbreedte. [5]

Afhankelijk van de topologie en de capaciteit van de PEF apparatuur, kunnen verschillende pulsvormen worden verkregen: exponentieel, rechthoekig (rectangular), monopolair, bipolair, oscillerend.
Uit onderzoek is gebleken dat de oscillerende vorm het minste effect heeft op inactivering van micro-organismen. Terwijl rectangular pulsen geven meer effect als het gaat om energie en inactiverig ten opzichte van exponentiele pulsen.
Uit hetzelfde onderzoek in gebleken dat door het gebruik van monopolaire pulsvorm 4,5 decimale reductie is verkregen van Bacillus subtillis in melk, terwijl bipolair 5,5 decimale reductie heeft veroorzaakt. In beide gevallen zijn er 13 pulsen van 16kV/cm toegepast met een pulsbreedte van 180 microseconden (μsec). [5]

De temperatuur van de behandeling heeft een groot effect op de inactivatie van micro-organismen. Verschillende onderzoekers hebben het synergie effect van temperatuur (25-55°C) in combinatie met PEF behandeling voor de inactivering van micro-organismen alsmede enzymen kunnen aantonen. De toename van temperatuur leidt tot een toename van de kinetisch energie van de ionen, daardoor worden de celwanden van de micro-organismen permeabel.
Uit onderzoek kon men constateren dat de combinatie van PEF en een temperatuur van 55°C, de celwanden van Escherechia coli O157:H7 kon afbreken. Uit een ander onderzoek is gebleken dat door het gebruik van 35 pulsen van 25 en 31 kV/cm, respectievelijk 3 decimale reductie van Staphlococcus aureus en 2 decimale reductie van Bacillus cereus kon worden verkregen bij magere melk. De tijd en temperatuur combinatie die werden gehanteerd waren respectievelijk: 15 min / 45°C, 20 en 40 min / 60°C voor S. aureus en 5 – 10 min / 70°C voor B cereus. [5]
Er is een studie uitgevoerd omtrent het temperatuureffect op behandeling van Escherichia coli in appelsap. Deze studie wilde het effect van gecombineerd behandeling van PEF en milde hitte-behandeling wijzen voor microbiële inactivering. Men kon aantonen dat een temperatuurbehandeling van 35-55°C Escherichia coli tot 6 decimale-reductie kon veroorzaken. Hierboven wordt 10 tot 40 kJ/kg vereist wanneer het werken bij een eerste behandelingstemperatuur van 55°C is toegepast. [6]
Uit een ander onderzoek is gebleken dat het toepassen van PEF behandeling van 15 tot 30 pulsen van 30 kV/cm bij 43°C tot 2 decimale reductie leidt van Bacillus subtillis. Vervolgens heeft men de temperatuur verhoogd naar 55°C. Dit resulteert in 5 decimale reductie van Bacillus subtillis. [7]

3.2 Enzym inactivering

De enzymatische activiteit wordt veranderd door PEF behandeling.
In het algemeen, enzyminactivering door PEF te bereiken, is minder significante ten opzichte van microbiële inactivering. Dit feit is belangrijk omdat sommige enzymen nuttig zijn voor de voedselindustrie, PEF zou tot de vernietiging van micro-organismen leiden. Terwijl het handhaven van de activiteit van sommige enzymen gewenst is. De PEF behandeling beïnvloedt enzymactiviteit. In de meeste gevallen, zijn de hoge niveaus van inactivering bereikt, maar in sommige gevallen zijn geen effecten of geen verhoging van aanvankelijke activiteit ontdekt. Afhankelijk van de product soort en de behandelingconditie (tijd/temperatuur) is de enzymen inactivering groot of juist klein (zie figuur 3.4).
Zoals in figuur 3.4 wordt weergegeven is de inactivering van Pectin methyl esterase in jus’orange tot 88% bereikt bij een behandeling van 35kV/cm, 59μs bij 60°C, terwijl minder dan 10% inactivering is verkregen bij 35 kV/cm, 1000 μs. [8]

Enzyme Media Treatment conditions Inactivation (%) Reference
Pectin methyl esterase (tomato) NaCl solution (8.8%) a24 kV/cm, 8000µs, 15°C 93.8 Giner et al. (2000)
Distilled water a30 kV/cm, 4000µs < 10 Van Loey et al. (2002)
Pectin methyl esterase Orange juice b35 kV/cm, 59µs, 60.1°C 88 Yeom et al. (2000b)
Orange juice b25 kV/cm, 250000µs, 65°C 90 Yeom et al. (2002)
Orange juice b35 kV/cm, 1500µs, 45°C 80 Elez-Martinez et al. (2003a)
Blended orange-carrot juice b25 kV/cm, 340µs, 63°C 79 Rodrigo et al. (2001)
Pectin methyl esterase (orange peel) Orange juice a35 kV/cm, 1000µs < 10 Van Loey et al. (2002)
Distilled water and MccIlvaine buffer (pH=3.7) a30 kV/cm, 40000µs < 10 Van Loey et al. (2002)

Figuur 3.4 overzicht enzymen inactivatie (Sun, et. al 2005, p. 162-163)


> PEF behandeling kan eenvoudig vegetatieve micro-organismen, alsmede enzymen inactiveren. PEF kan ook ziekteverwekkers vernietigen. Sporenvormers en bederfsoort bacteriën worden vernietigd, mits de juiste behandeling wordt toepast, met name hogere temperatuur.

4 Toepassing

PEF behandeling wordt toegepast in verpompbare producten zoals melk, yoghurt, vruchtensappen en eventueel een heel ei (tussen twee elektroden). [9]
Het wordt ook toegepast bij droogprocessen bij fruit, plantencellen extractie en bij behandeling van zure producten. [10]
In de onderstaande figuur (4.1) wordt weergegeven welke producten behandeld worden door PEF:

Treated medium Reference
0.1% NaCl solution Sale and Hamilton (1967), Gupta and Murray (1989)
17.1 mM saline solution Hülsheger and Niemann (1980)
0.9% NaCl solution Jacob et al. (1981), Yonemoto et al. (1993)
Phosphate buffer, pH 7.0 Hülsheger et al. (1983), Matsumoto et al. (1991), Jayram et al. (1992)
Milk Dunn and Pearlman (1987), Gupta and Murray (1989), Reina et al. (1998), Bendicho et al. (2002a)
Yogurt Dunn and Pearlman (1987)
Deionized water Mizuno and Hori (1988)
Sodium alginate Grahl et al. (1992)
Orange juice Grahl et al. (1992), Qiu et al. (1998), Hodgins et al. (2002), Liang et al. (2002), Zhang et al. (2002)
UHT milk (1.5% fat) Grahl et al. (1992)
Potato dextrose sugar Zhang et al. (1994a)
Apple juice Qin et al. (1994), Zhang et al. (1994b), Qin et al. (1995), Evrendilek et al. (1999)
Simulated milk ultrafiltrate (SMUF) Qin et al. (1994), Zhang et al (1994), Pothakamury et al. (1995)
Skim milk Zhang et al. (1994a), Martin et al. (1997), Calderon-Miranda el al. (1999)
Sucrose and xanthan solution Ho et al. (1995)
Pea soup Vega-Mercado et al. (1996a)
Liquid egg Martin-Belloso et al. (1997), Calderon-Miranda et al. (1999), Góngora-Nieto et al. (2001)
Cranberry juice Raso et al. (1998), Jin and Zhang (1999)
Dry spices Keith et al. (1997)
Wheat flour Keith et al. (1998)
Liquid egg white Jeantet et al. (1999)
Rice wine Mok and Lee (2000)
Orange carrot juice Rodrigo et al. (2001)
Rice pudding Ratanatriwong et al. (2001)
Apple cider Iu et al. (2001)
Cheese sauce Ruhlman et al. (2001a)
Beef burgers Bolton et al. (2002)
Horchata Góngora-Nieto et al. (2002)

(Barbosa – Cánovas, 2005, p. 24)

5 Voor en nadelen


  • Continu proces: het product kan stromend geconserveerd worden;
  • Chemische en fysische product eigenschappen blijven in stand;
  • Apparatuur is eenvoudig: een kleine behandelruimte met aan beide zijden een elektrode;
  • Het product kan de gewone omgevingstemperatuur hebben of zelfs gekoeld zijn;
  • Als gevolg van de zeer korte pulstijd en de korte behandelduur stijgt de producttemperatuur maar gering;
  • Sterk verlaagd gebruik van water en energie, dus milieuvriendelijk t.o.v. bijvoorbeeld UHT;
  • PEF-installatie hoeft (vergeleken met UHT) veel minder gereinigd te worden.


  • Het te behandelen product moet homogeen zijn qua samenstelling om overal een veldsterkte van 15 kV/cm te bereiken;
  • Niet homogene producten veroorzaken bij hogere veldsterkten een elektrische doorslag (kortsluiting).


6 Nomenclature

PEF = Pulsed Electric Field
KV/cm = kiloVolt per cm (laagdikte
UHT = Ultra Hoge Temperatuur

7 Referenties

[1] = Sun, Da-Wen, Emerging Technologies for food processing, 2005, Elsevier Academic Press, Hoofdstuk 4, bladzijde 70
[2] = Sun, Da-Wen, Emerging Technologies for food processing, 2005, Elsevier Academic Press, Hoofdstuk 4, bladzijden 74 en 75
[3] = Rouweler, J.w, Conserveren, 2006, Dictaat HAS Den Bosch, Hoofdstuk 5, bladzijde 5-11
[4] = Sun, Da-Wen, Emerging Technologies for food processing, 2005, Elsevier Academic Press, Hoofdstuk 4, bladzijden 77 en 78
[5] = Barbosa-Cánovas., Novel Food Processing Technologies, , 2005, CRC Press, Hoofdtsuk 4, bladzijden 71 en 72
[6] = Sun, Da-Wen, Emerging Technologies for food processing, 2005, Elsevier Academic Press, Hoofdstuk 5, bladzijden 122
[7] = Sun, Da-Wen, Emerging Technologies for food processing, 2005, Elsevier Academic Press, Hoofdstuk 5, bladzijden 113
[8] = Sun, Da-Wen, Emerging Technologies for food processing, 2005, Elsevier Academic Press, Hoofdstuk 7, bladzijden 161
[9] = Rouweler, J.w, Conserveren, 2006, Dictaat HAS Den Bosch, Hoofdstuk 5, bladzijde 5-11
[10] = Barbosa-Cánovas, Novel Food Processing Technologies, 2005, CRC Press, Hoofdstuk 7, bladzijden 153 en 154

toggle editorial